April 2, 2018 B: Boundary (helps us to understand how our universe comes into being through change): It is possible to understand our universe through the realization that nothing exists without change, and the least description of change is a boundary.
A boundary can be a discrete line across which something happens. In my experiment, I have a droplet that has a boundary that is expanding and isn’t just smooth because of the high surface tension in water (the meniscus between water and oil). Not all boundaries are smooth, but if a boundary is smooth (and in some kind of tension) then information may transfer across it. As information crosses our universal boundary, its shape changes (and its function changes with its form). Our research suggests that the first living cell makes use of this boundary to develop a membrane that completely splits it in half. Because flow is different inside and outside an expanding boundary, the universe can come into existence as it changes its form and its boundary buckles (goes unstable: is open to the growth of random perturbations/sine-waves).
Without instability of a boundary, nothing can happen. For example, it is nearly impossible for information to cross the surface boundary of a black hole because its massive curvature makes it stable. No matter how we try to perturb a stable boundary, it damps out all information. So all action and life in our universe is a product of an unstable boundary, one that can change in space and time.
Relational philosophies speak of relationships across boundaries. As two things interact, they form boundaries between them. But in our universe, from its beginning (a Big Bang coherent singularity source?) there are first fuzzy boundary relationships formed (quarks, subatomic particles, atos) and then, the boundaries become discrete objects that themselves relate to one another across their own boundaries (as the universe cools, as the outward expansion slows).